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Multiple translational temperature model and its shock structure solution

Kun Xu*
Department of Mathematics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong

Eswar Josyul%
U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7913
(Received 16 November 2004; revised manuscript received 21 March 2005; published 31 May 2005

Within a shock layer, the translational motion of the gas is more energetic in the direction perpendicular to
the shock front than in the direction parallel to the shock. To predict this translational nonequilibrium, a
generalized gas-kinetic BGK model is proposed. With the adaptation of a continuum gas distribution function
truncated up to the Navier-Stokes order and a generalized particle collision time, this newly constructed kinetic
model is used in the monatomic gas shock structure calculations, where two translational temperatures inside
the shock layer are well captured.
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I. INTRODUCTION Il. A MULTIPLE TRANSLATIONAL TEMPERATURE
MODEL

The hypersonic rarefied gas flow is characterized by the Many kinetic models have been proposed for the captur-
large region of translation nonequilibrium. For the Navier-ing of multitranslational temperature effect. Holw#go]
Stokes equations, the random translational energy is usuallysed an ellipsoid Maxwellian for the gas distribution. In the
modeled by a single gas temperature. In order to capture thgne-dimensional case, the multiple temperature distribution
translational nonequilibrium and compare it with the directfunction stands as
simulation Monte CarldDSMC) solution, many continuum 12 12 12
models have been proposed. More than 20 years ago, based  g= (5‘) (M) ()‘_Z) exd— A\, (u-U)?
on the molecular dynamical simulation, Holiat al. [1]
qualitatively evaluated the different temperature profiles, —)\yvz—)\zwz], (1)

from which Holian conjectured that the viscosity and heat

conduction coefficients in the shock layer should depend'herep is the densityl is the macroscopic velocity in the -
only on the temperature perpendicular to the shock frontdirection, andu,v,w) are the components of particle veloci-

which is higher than that in other directions. Based on Ho-ieS in thex, y, andz directions. The parametexsis related
lian’s conjecturd 2], an excellent improvement between con- {0 the gas temperature, i.e\,=m/2kT,, A,=m/2kT,, and
tinuum model and MD simulation of Salomons and Mare-A2=M/2KT,. For the 1D shock structure, we halg=T,
schal[3] was obtained. Based on the Boltzmann equationtherefore,A,=\,. The establishment of the above ellipsoid
Candleret al. have formulated hydrodynamic equations up toi\/_IaXWeII distribution is due to the course of particle colli-
the Navier-Stokes order with translational nonequilibrium inSions. Physically, the above ellipsoid equilibrium siteill
the shock structure calculatiofd]. Even with multitransla-  further approach an overall equilibriumduring the course
tional temperatures, as observed by many researchers, tREparticle collisions

Navier-Stokes equations of the classical hydrodynamics are o eq

still incapable of accurately describing the nonequilibrium g:P<
wave phenomena. For example, the Navier-Stokes solutions

present a thin shock thickness in comparison with the experiwith the mass, momentum, and total energy conservation
ment’s measurement. In order to improve the Navier-Stokeduring the particle collision, the relation between the abso-
solutions, much effort has been spent on the construction diite local equilibrium temperaturg®® (A®%=m/2kT®% and
higher-order hydrodynamic equations, such as the Burnethe individual temperature®,, T,, andT, is

and regularized Grad'’s solutiof5—8]. However, the imple-

mentation of a multiple translational temperature model in Ted= }(Tx+ 2Ty), (3

the Burnett or extended hydrodynamical equations has not 3

been done yet. In_ this paper, we develop a mult?translationq}vhere the assumptioR, =T, has been used in the current 1D
temperature kinetic model and use the gas-kinetic sch@ine case. The above processz fragrto g can be modeled as a

to obtain its shock structure solution. collision process with relaxation timg i.e., (g—g)/ 7. Tak-
ing momentv?/2 on the collision term{g—g)/r and using
the relation(3), we can get the source term for the tempera-
*Email address(makxu@ust.hk ture evolution equation in thg direction, which ispR(T,
"Email addressteswar.josyula@wpafb.af.mil -T,)/37, whereR is the gas constant. This is exactly the

w aa m

3/2
) exp{—- \*Q(u-U)%+ 2+ w2} (2)
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FIG. 2. Computed normalized density and temperatures for a

FIG. 1. Computed normalized density and temperatures for %/Iach 2.0 Maxwellian gas shock wave

Mach 1.2 Maxwellian gas shock wave. The DSMC solution is from

Candleret al. [4].
the weight function 1/2 in the above model is due to the

following consideration. For any kinetic model for capturing
rmultiple translational temperature, one basic requirement is
that the averaged temperature, sucITaé(TX+ 2T,), should

go back to the same temperature as that in the single-
monatomic gas, the particle collision will driieto g andg. ~ temperature BGK modell1]. Tgking momentgu-U)?, Uzl

It is hard to distinguish the process frofrto g or from f to ~ andw? on Eq.(4), we can obtain the temperature evolution
9. In terms of the particle collision time, they should be the€duations in individual directions. Putting them together and
same for the translational nonequilibrium. Therefore, for the!Sing the condition B=T,+T,+T,, we can also get the evo-
monatomic gas we can construct a generalized BGK modd¥tion equation for the averaged temperatiire

for the translational nonequilibrium
q (pT)e+ (pUT), = (pTe4= pT)/ 7.

1l g-f g-f
ft+ufx:5|:g +g_:|,

T T

same source term constructed by Candleanl. [4] in their
extended Navier-Stokes equations based on the Boltzma
equation.

Starting a nonequilibrium gas distribution functibifior a

(4) This is the same temperature evolution equation from the
original BGK model. Therefore, the mod@l) with a simple
wheref is the real gas distribution function, agcandg are  weight function is a natural extension from one to multiple

the corresponding Maxwellians defined above. The use dfemperatures.
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FIG. 3. Computed normalized density and temperatures for a FIG. 4. Computed normalized density and temperatures for a
Mach 5.0 Maxwellian gas shock wave. Mach 11 Maxwellian gas shock wave.
The masg, momentunmpU, total energypE, and thermal 1 -
i H H - - + - =S=
energypE, in they- andz directions are the moments f 2[(9 f)+(g-Nlsduddw=S=(0,0,05)",

p a=1,2,3,4, (5

where the source tersis modeled as=pR(T,—T,)/37.
In order to validate the above model, the numerical

pU
W= £ = f Yfdudvdw,
P method developed in Rdf9] is used to solve Eq4). This is

PE; a finite volume method
where ¢ has the components " 1 (At
W =W+ Ax [Fi-12(t) = Fjs1()]dt+ S'AL,  (6)
(10 n2e 2o L2 )T °
¢_<1’u’2(u oW ),2(v W) where W is the cell-averaged mass, momentum, total en-

ergy, and the thermal energy in tlye andz directions, and
Since only mass, momentum, and total energy are conserved, ,, is the corresponding fluxes at a cell interface by solv-
during particle collisions, the collision term in E@) satis-  ing Eq.(4). Note thatAt is the time step\t=t"*!-t", and
fies the condition is the source term in the thermal energy equation. The evalu-
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ation of the fluxes is based on the gas distribution function
at a cell interface. In the shock structure calculation, the gas 1
distribution function at a cell interface is constructed using
an iterative expansion of modét), and has the form

0.8 Density

1 1 — — 1
f=2@+0) - SAg+g+ulg+gdl+Sta+a), (1) - |
2 2 2 Tos
where theg, and g, can be obtained from the gradients of = - gf::leitmodel
macroscopic variables, amgl andg, are evaluated based on &°o4 F [== Navier_Stokeg

the compatibility conditions

J(gt+ugx)¢//adud)dwzo andf@+ ugy) ,dudvdw=0.

The third term on the right-hand side of HJ) is related to
the time evolution part;, which is approximated by the time -0 -8 -5 -4 -2 0 2 4 6 8 10
derivative of the equilibrium statég+g)/2. The iterative
method for the BGK solution has been proved to be equiva- FIG. 5. Density distributions from NS, current model, and
lent to the Chapman-Enskog expansion up to the supeBSMC for a Mach 2.0 Maxwellian gas.
Burnett ordef12].

Even with the capacity of recovering two translationaltiple translational temperature; their DSMC results will be
temperature, the nonequilibrium distributioér) truncated up  used here as a benchmark solution.
to the Navier-Stokes order is inadequate in the description of Figures 1-4 plot the Maxwellian gas shock waves for
translational nonequilibrium. For example, the shock thick-free-stream Mach numbers between 1.2 and 11. We plot the
ness constructed from the above model will be too thin innormalized temperaturd,,=(T-T,)/(T,-T,), and normal-
comparison with experimental measurements. In an earlidzed densityp,=(p—p1)/(p,—p1) versusx/\;. The upstream
paper[13], we replace the collision time in the Chapman- mean-free paths; as defined in Refl4] have the value;
Ens_kog expansion by agene_:ralized enewhich is obtained =2,u/p161, Wheregl is the mean atomic speed at the up-
by imposing a closed solution of the BGK model. In our gyeam condition. From these figures, we can see the reason-
current approach, a generalized particle collision timén  gpje agreement between the current results and DSMC solu-
Eq. (7) will also be used. The value of is obtained by tions for all cases from the continuufv=1.2) to the highly

- nonequilibrium ongM =11). We also calculate the asymme-
T = m try factor (Q,) for the M=2 case, which is defined bQ,

5 =J%..pndX/ [-(1=p,)dx, wherex' is the location forp,=0.5.
where D=g+ud, and (--)=f(...)(u=U) dudvdw, see Ref.  igre 5 shows the density distributions from the current
[13]. Here, 7 depends on the macroscopic variables throughsg|ytion, Navier-Stokef9], and DSMC solutions. The calcu-

the relation 7p=uef(T/Trer), and the generalized” wil latedQ,’s from the current model and the Navier-Stokes are
depend not only on the macroscopic variables but also their

gradients. In order to simulate the flow with any realistic
Prandtl number, a modification of the heat flux in the energy
transport at a cell interface, such as that used in Pgf.is
also implemented in the current calculation.

5

4 Current model
3r O MD
2

1

0

density

lIl. SHOCK STRUCTURE CALCULATION AND 2 15 1 05 o0 05 1 15 2
CONCLUSION position

One of the direct tests for the above model is the calcu-
lation of the shock structure. Since there are almost no ex-2 0.2
perimental data for the two translational temperature mea-g
surements, the comparison with the DSMC and MD solution E 01y
becomes necessary. The current calculation is for a mon™=
atomic gas with the atomic weight of argon and a Maxwell-
ian (inverse fourth power interatomic potential (uef
=2.515x 10°° kg/ms, T,.=273 K, andw=1 for Maxwellian
gas andw=0.5 for hard sphepe All computations use an FIG. 6. Densityp/p, (up) and temperaturd/(U2/R) (down)
equally spaced mesh with total 200 grid points with incom-distributions vs position/I in units of upstream mean-free path
ing gas conditionp;=1171.88 PaJ;=226.64 k. Candleet  for an ideal hard sphere gasMt=134: solid lines(current model
al. [4] have extensively studied the shock structure with mul-and circles(MD solution) in Ref.[2].

-2 -15 -1 -0.5 0 0.5 1 1.5 2
position
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0.9239 and 1.251, respectively. Last, we apply the currenthe original BGK equation. Since continuous particle veloc-
model to the high Mach numbevi=134 shock wave for ity space is used in the current numerical approach, the effi-
hard sphere gas with the same incoming flow condition. Theiency of the current method is close to the direct Navier-
density and temperature distributions are shown in Fig. 6Stokes flow solver, which is much more efficient than the
where the MD solution is from Reff2]. At such a high Mach direct Boltzmann and DSMC methods. All shock structures
number, the downstream temperature goes up to 1.273 miln this paper are obtained numerically based on the kinetic
lion degrees. The physical validity for any model presentednodel.
in this paper at such an extreme condition may be question-
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