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Within a shock layer, the translational motion of the gas is more energetic in the direction perpendicular to
the shock front than in the direction parallel to the shock. To predict this translational nonequilibrium, a
generalized gas-kinetic BGK model is proposed. With the adaptation of a continuum gas distribution function
truncated up to the Navier-Stokes order and a generalized particle collision time, this newly constructed kinetic
model is used in the monatomic gas shock structure calculations, where two translational temperatures inside
the shock layer are well captured.
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I. INTRODUCTION

The hypersonic rarefied gas flow is characterized by the
large region of translation nonequilibrium. For the Navier-
Stokes equations, the random translational energy is usually
modeled by a single gas temperature. In order to capture the
translational nonequilibrium and compare it with the direct
simulation Monte CarlosDSMCd solution, many continuum
models have been proposed. More than 20 years ago, based
on the molecular dynamical simulation, Holianet al. f1g
qualitatively evaluated the different temperature profiles,
from which Holian conjectured that the viscosity and heat
conduction coefficients in the shock layer should depend
only on the temperature perpendicular to the shock front,
which is higher than that in other directions. Based on Ho-
lian’s conjecturef2g, an excellent improvement between con-
tinuum model and MD simulation of Salomons and Mare-
schal f3g was obtained. Based on the Boltzmann equation,
Candleret al.have formulated hydrodynamic equations up to
the Navier-Stokes order with translational nonequilibrium in
the shock structure calculationsf4g. Even with multitransla-
tional temperatures, as observed by many researchers, the
Navier-Stokes equations of the classical hydrodynamics are
still incapable of accurately describing the nonequilibrium
wave phenomena. For example, the Navier-Stokes solutions
present a thin shock thickness in comparison with the experi-
ment’s measurement. In order to improve the Navier-Stokes
solutions, much effort has been spent on the construction of
higher-order hydrodynamic equations, such as the Burnett
and regularized Grad’s solutionsf5–8g. However, the imple-
mentation of a multiple translational temperature model in
the Burnett or extended hydrodynamical equations has not
been done yet. In this paper, we develop a multitranslational
temperature kinetic model and use the gas-kinetic schemef9g
to obtain its shock structure solution.

II. A MULTIPLE TRANSLATIONAL TEMPERATURE
MODEL

Many kinetic models have been proposed for the captur-
ing of multitranslational temperature effect. Holwayf10g
used an ellipsoid Maxwellian for the gas distribution. In the
one-dimensional case, the multiple temperature distribution
function stands as

g = rSlx

p
D1/2Sly

p
D1/2Slz

p
D1/2

expf− lxsu − Ud2

− lyv
2 − lzw

2g, s1d

wherer is the density,U is the macroscopic velocity in thex
direction, andsu,v ,wd are the components of particle veloci-
ties in thex, y, andz directions. The parametersl is related
to the gas temperature, i.e.,lx=m/2kTx, ly=m/2kTy, and
lz=m/2kTz. For the 1D shock structure, we haveTy=Tz;
therefore,ly=lz. The establishment of the above ellipsoid
Maxwell distribution is due to the course of particle colli-
sions. Physically, the above ellipsoid equilibrium stateg will
further approach an overall equilibriumḡ during the course
of particle collisions

ḡ = rSleq

p
D3/2

exph− leqfsu − Ud2 + v2 + w2gj. s2d

With the mass, momentum, and total energy conservation
during the particle collision, the relation between the abso-
lute local equilibrium temperatureTeq sleq=m/2kTeqd and
the individual temperaturesTx, Ty, andTz is

Teq=
1

3
sTx + 2Tyd, s3d

where the assumptionTy=Tz has been used in the current 1D
case. The above process fromg to ḡ can be modeled as a
collision process with relaxation timet, i.e., sḡ−gd /t. Tak-
ing momentv2/2 on the collision termsḡ−gd /t and using
the relations3d, we can get the source term for the tempera-
ture evolution equation in they direction, which isrRsTx

−Tyd /3t, where R is the gas constant. This is exactly the
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same source term constructed by Candleret al. f4g in their
extended Navier-Stokes equations based on the Boltzmann
equation.

Starting a nonequilibrium gas distribution functionf for a
monatomic gas, the particle collision will drivef to g andḡ.
It is hard to distinguish the process fromf to g or from f to
ḡ. In terms of the particle collision time, they should be the
same for the translational nonequilibrium. Therefore, for the
monatomic gas we can construct a generalized BGK model
for the translational nonequilibrium

f t + ufx =
1

2
Fg − f

t
+

ḡ − f

t
G , s4d

where f is the real gas distribution function, andg andḡ are
the corresponding Maxwellians defined above. The use of

the weight function 1/2 in the above model is due to the
following consideration. For any kinetic model for capturing
multiple translational temperature, one basic requirement is
that the averaged temperature, such asT= 1

3sTx+2Tyd, should
go back to the same temperature as that in the single-
temperature BGK modelf11g. Taking momentssu−Ud2, v2

andw2 on Eq.s4d, we can obtain the temperature evolution
equations in individual directions. Putting them together and
using the condition 3T=Tx+Ty+Tz, we can also get the evo-
lution equation for the averaged temperatureT

srTdt + srUTdx = srTeq− rTd/t.

This is the same temperature evolution equation from the
original BGK model. Therefore, the models4d with a simple
weight function is a natural extension from one to multiple
temperatures.

FIG. 1. Computed normalized density and temperatures for a
Mach 1.2 Maxwellian gas shock wave. The DSMC solution is from
Candleret al. f4g.

FIG. 2. Computed normalized density and temperatures for a
Mach 2.0 Maxwellian gas shock wave.
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The massr, momentumrU, total energyrE, and thermal
energyrEr in the y- andz directions are the moments off

W=1
r

rU

rE

rEr

2 =E cfdudvdw,

wherec has the components

c = S1,u,
1

2
su2 + v2 + w2d,

1

2
sv2 + w2dDT

.

Since only mass, momentum, and total energy are conserved
during particle collisions, the collision term in Eq.s4d satis-
fies the condition

E 1

2
fsg − fd + sḡ − fdgcadudvdw= S= s0,0,0,sdT,

a = 1,2,3,4, s5d

where the source terms is modeled ass=rRsTx−Tyd /3t.
In order to validate the above model, the numerical

method developed in Ref.f9g is used to solve Eq.s4d. This is
a finite volume method

Wj
n+1 = Wj

n +
1

Dx
E

0

Dt

fFj−1/2std − Fj+1/2stdgdt + Sj
nDt, s6d

where Wj
n is the cell-averaged mass, momentum, total en-

ergy, and the thermal energy in they- andz directions, and
Fj+1/2 is the corresponding fluxes at a cell interface by solv-
ing Eq. s4d. Note thatDt is the time stepDt= tn+1− tn, andSj

n

is the source term in the thermal energy equation. The evalu-

FIG. 3. Computed normalized density and temperatures for a
Mach 5.0 Maxwellian gas shock wave.

FIG. 4. Computed normalized density and temperatures for a
Mach 11 Maxwellian gas shock wave.
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ation of the fluxes is based on the gas distribution functionf
at a cell interface. In the shock structure calculation, the gas
distribution function at a cell interface is constructed using
an iterative expansion of models4d, and has the form

f =
1

2
sg + ḡd −

1

2
tfgt + ḡt + usgx + ḡxdg +

1

2
tsgt + ḡtd, s7d

where thegx and ḡx can be obtained from the gradients of
macroscopic variables, andgt and ḡt are evaluated based on
the compatibility conditions

E sgt + ugxdcadudvdw= 0 andE sḡt + uḡxdcadudvdw= 0.

The third term on the right-hand side of Eq.s7d is related to
the time evolution partf t, which is approximated by the time
derivative of the equilibrium statesg+ ḡd /2. The iterative
method for the BGK solution has been proved to be equiva-
lent to the Chapman-Enskog expansion up to the super-
Burnett orderf12g.

Even with the capacity of recovering two translational
temperature, the nonequilibrium distributions7d truncated up
to the Navier-Stokes order is inadequate in the description of
translational nonequilibrium. For example, the shock thick-
ness constructed from the above model will be too thin in
comparison with experimental measurements. In an earlier
paperf13g, we replace the collision timet in the Chapman-
Enskog expansion by a generalized onet* , which is obtained
by imposing a closed solution of the BGK model. In our
current approach, a generalized particle collision timet* in
Eq. s7d will also be used. The value oft* is obtained by

t* =
t

1 + tkD2gl/kDgl
,

where D=]t+u]x and k¯l=es. . .dsu−Ud2dudvdw; see Ref.
f13g. Here,t depends on the macroscopic variables through
the relationtp=mrefsT/Trefdv, and the generalizedt* will
depend not only on the macroscopic variables but also their
gradients. In order to simulate the flow with any realistic
Prandtl number, a modification of the heat flux in the energy
transport at a cell interface, such as that used in Ref.f9g, is
also implemented in the current calculation.

III. SHOCK STRUCTURE CALCULATION AND
CONCLUSION

One of the direct tests for the above model is the calcu-
lation of the shock structure. Since there are almost no ex-
perimental data for the two translational temperature mea-
surements, the comparison with the DSMC and MD solution
becomes necessary. The current calculation is for a mon-
atomic gas with the atomic weight of argon and a Maxwell-
ian sinverse fourth powerd interatomic potential smref
=2.515310−5 kg/ms,Tref=273 K, andv=1 for Maxwellian
gas andv=0.5 for hard sphered. All computations use an
equally spaced mesh with total 200 grid points with incom-
ing gas conditionp1=1171.88 Pa,T1=226.64 k. Candleret
al. f4g have extensively studied the shock structure with mul-

tiple translational temperature; their DSMC results will be
used here as a benchmark solution.

Figures 1–4 plot the Maxwellian gas shock waves for
free-stream Mach numbers between 1.2 and 11. We plot the
normalized temperature,Tn=sT−T1d / sT2−T1d, and normal-
ized densityrn=sr−r1d / sr2−r1d versusx/l1. The upstream
mean-free pathsl1 as defined in Ref.f4g have the valuel1

=2m /r1C̄1, where C̄1 is the mean atomic speed at the up-
stream condition. From these figures, we can see the reason-
able agreement between the current results and DSMC solu-
tions for all cases from the continuumsM =1.2d to the highly
nonequilibrium onesM =11d. We also calculate the asymme-
try factor sQrd for the M =2 case, which is defined byQr

=e−`
x*

rndx/ex*
` s1−rnddx, wherex* is the location forrn=0.5.

Figure 5 shows the density distributions from the current
solution, Navier-Stokesf9g, and DSMC solutions. The calcu-
latedQr’s from the current model and the Navier-Stokes are

FIG. 6. Densityr /r1 supd and temperatureT/ sU1
2/Rd sdownd

distributions vs positionx/ l in units of upstream mean-free pathsld
for an ideal hard sphere gas atM =134: solid linesscurrent modeld
and circlessMD solutiond in Ref. f2g.

FIG. 5. Density distributions from NS, current model, and
DSMC for a Mach 2.0 Maxwellian gas.
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0.9239 and 1.251, respectively. Last, we apply the current
model to the high Mach numberM =134 shock wave for
hard sphere gas with the same incoming flow condition. The
density and temperature distributions are shown in Fig. 6,
where the MD solution is from Ref.f2g. At such a high Mach
number, the downstream temperature goes up to 1.273 mil-
lion degrees. The physical validity for any model presented
in this paper at such an extreme condition may be question-
able.

In this paper, we construct a generalized BGK model to
capture the multiple translational temperature for a mon-
atomic gas. The current model is a natural extension of the
single-temperature BGK model. The averaged temperature in
the current model will go back to the single temperature in

the original BGK equation. Since continuous particle veloc-
ity space is used in the current numerical approach, the effi-
ciency of the current method is close to the direct Navier-
Stokes flow solver, which is much more efficient than the
direct Boltzmann and DSMC methods. All shock structures
in this paper are obtained numerically based on the kinetic
model.
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